急性肠炎症状

注册

 

发新话题 回复该主题

人类开发出光速CPU,秒运算百万亿次,可 [复制链接]

1#
北京中科医院都是假的 https://m.39.net/baidianfeng/a_5154120.html

我相信人类总是向着三个方向前进,那就是更快、更高、更强!快对人类来说至关重要,如果你的手机能缩短完成任务所需的时间,或者你的计算机能以我们大多数人都能做到的方式更快地计算,那么毫无疑问,所有人都希望你的设备更快!确实,以目前的技术状况来看,事实是,它们可能会比过去十年快得多,但是就目前看来,单处理器内核的时钟频率有五分之一会停滞在几千兆赫,而且越来越难实现进步,从而很难突破著名的摩尔定律的界限。

然而,ibm的一项新发明可能会改变这一切,那就是光速CPU,说到光速CPU,就不得不说到光学电路,简单一句话,这个新的光学电路超越了人类已知的每一个cpu。那么什么是光学电路?它们是如何工作的?它们是如何使你的设备更快?当我们深入到一个新的光学电路中时,我们会发现它们比我们想象的还要神秘!

举例来说你的大脑和计算机有什么共同点,其实没有什么共同点。然而,两者的工作原理也有相似之处。例如,你的大脑中有大约亿个叫做神经元的细胞,这些微小的开关可以让你思考和记忆事物。同样的,在计算机中,它们也包含数十亿个微型脑细胞。这些脑细胞被称为晶体管,由硅制成。

硅是一种常见于沙子中的化学元素,但晶体管如何工作取决于你如何使用它以及它的数量。晶体管是一种微型电子元件,可以做两种不同的工作。它既可以作为放大器工作,也可以作为开关。当它作为放大器工作时,它在一端接收一个微小的电流,作为输入电流,在另一端产生一个更大的电流和输出电流。

换句话说,就是把一个动作放大,例如助听器是晶体管的最早用途之一,助听器内部有一个微型麦克风,可以接收来自你周围世界的声音,并将其转化为波动的电流。这些电流被输入一个晶体管,晶体管可以对其进行增强,并为一个小型扬声器供电,这样你就可以听到周围声音的更大版本。

晶体管也可以作为开关,工作原理是当一个微小的电流流过晶体管的一个部分时,可以使一个更大的电流流过另一个部分,相当于大的一个部分上的小电流开关,这基本上就是所有计算机芯片的工作原理。例如,一个存储芯片包含数亿甚至数十亿个晶体管,这些晶体管可以单独打开或关闭,由于每个晶体管可以处于两种不同的状态,它可以存储两个不同的数字0和1,通过将数十亿个晶体管堆积在一个芯片上,它可以保留数十亿个0和1。

而几乎同样多的普通数字、字母或字符晶体管都是由硅制成的,通常不导电硅是半导体,这意味着它既不是真正的半导体导体也不是绝缘体,但晶体管在计算机内部是如何工作的呢?比如说,你可以把几个晶体管开关放在一起,形成一个逻辑门,它可以比较多个输入电流并给出不同的输出。逻辑门让计算机使用一种称为布尔代数的数学技术做出简单的决定,除非你热衷于设计并修改自己的逻辑门,否则一般人是不会浪费时间去修改的。

再回到我们刚才的话题,晶体管和效率有千丝万缕的关系。大多数人都听说过摩尔定律和公理,由英特尔联合创始人之一戈登·摩尔提出。该定律表明,电子设备的速度和性能大约每两年翻一番,事实上,每年科技公司都会推出更新、更快、更智能、更好的设备依赖于我们能否继续无限期地缩小晶体管的尺寸。目前,像英特尔这样的公司正在大规模生产直径为14纳米的晶体管,仅比dna分子宽14倍。这一壮举要归功于硅,硅的原子尺寸约为0.2纳米,而今天的晶体管约有70个硅原子宽,所以制造它们的可能性相当大。

但是不可否认的事实是,我们已经非常接近制造晶体管的极限,因此我们如何继续从我们的设备中获得更高的性能,这就是ibm研究光学电路的原因,据了解,该研究团队已经开发出一种可以取代电子晶体管的高能效光学开关,简称光晶体管。在操作光子而非电子的新一代计算机中,除了直接省电之外,这种开关不需要冷却,每秒运算速度达到万亿次,比当今顶尖的商用晶体管快到倍。

我们知道大多数现代电子晶体管需要比这种光学电路慢几十倍的时间处理问题,除了性能问题外,用于开关和使用单电子实现可比效率的开关的能量也要慢得多。相互竞争的节能电子晶体管也往往需要笨重的冷却设备,这会消耗大量功率,并将其计入运行成本,因为要保证新开关在室温下方便地工作。

而光晶体管似乎不存在这些问题,不仅如此,光晶体管开关可以作为一个组件,通过以光信号的形式在设备之间传输数据来连接设备。它还可以作为一个放大器,将入射激光束的强度提高高达倍!那么光晶体管如何工作呢?

该设备依靠两个激光器将其状态设置为零或一,并在两个之间切换一束非常弱的控制激光束用于打开或关闭另一束更亮的激光束,控制光束中只需要几个光子,这就是为什么该设备如此高效,因为光速是宇宙中最快的速度。开关发生在一个微腔内部,该微腔是一个35纳米薄的有机半导体聚合物,夹在高反射无机结构之间,以这种方式构建的微腔可以保持当光子与空腔材料中的束缚电子-空穴对或出射子强烈耦合时,入射光被尽可能长时间地困在空腔材料中,以利于其与空腔材料的耦合。

当两种激光中较亮的泵浦激光照射在开关上时,这会产生短寿命的激子极化子——一种准粒子,并且处于开关操作的核心,这会在准确的位置产生数千个相同的准粒子,形成所谓的玻色-爱因斯坦凝聚体,玻色–爱因斯坦凝聚是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。

紧接着,这些粒子会对器件的零逻辑状态和一逻辑状态进行编码,以便在器件的两个能级之间切换。研究团队在泵浦激光脉冲到达前不久使用控制激光脉冲对凝聚体进行播种,从而刺激能量转换。通过泵浦激光增加冷凝液中准粒子的数量,其中的大量粒子对应于设备的一种状态。研究人员进行了几次调整,以确保低功耗。

首先,半导体聚合物分子的振动有助于高效切换。诀窍是匹配泵浦状态和凝聚态与聚合物中一种特定分子振动的能量。第二,团队设法找到了最佳波长来调谐激光,并实施了一种新的测量方案,实现了单次冷凝检测。第三,控制激光播种凝聚态,其检测方案相匹配,以抑制设备噪声背景辐射,这些措施最大限度地提高了设备的信噪比,并防止了微腔吸收过多的能量,而微腔只能通过分子振动将其加热。

目前团队面临的一个挑战是硅吸收可见光的能力,而在太阳能电池板中捕获太阳光是必要的。因此研究人员选择了纳米结构,这种结构叫做高对比度光栅。这种光栅由纳米尺寸的柱子组成,排列成栅栏,防止光线逃逸。柱子的直径为纳米,通过柱子的光会对光线产生破坏性干扰。目前,团队还有一些工作要做,以降低该设备的总体功耗。但总体来说,这项研究足以改变计算机光速处理的问题,但是关键是这种CPU能量产吗?毕竟是属于高科技的东西,可以说是IBM的机密,你认为这种CPU会量产吗?欢迎留下你的看法!

分享 转发
TOP
发新话题 回复该主题